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Abstract. Within the framework of perturbation theory we propose, firstly, an iterative method
which may serve as a source of optimal unperturbed solutions in both one and more dimensions.
It combines the Runge–Kutta and Newton algorithm and its efficiency is illustrated on a few
quartic oscillators. Secondly, admitting also an arbitrary perturbation of potentials we generalize
the existing Runge–Kutta one-dimensional Rayleigh–Schrödinger constructions of energies and
wavefunctions to more dimensions.

1. Introduction

Various applications of quantum mechanics need and use the Schrödinger equation in its
standard differential form

−4ψ(x)+ V (x)ψ(x) = Eψ(x). (1)

The methods of its solution may be variational (with emphasis on the upper-bound
property of the energies), perturbative (applicable simultaneously to the whole families
of interactions) or purely numerical (and sufficiently quick). In the latter category, one
may distinguish between the methods which are ‘robust’ (and converge even without any
a priori information about the result) and the methods with a maximal efficiency (i.e. rate
of convergence) [1].

The quickly convergent methods are needed, typically, whenever the solution of
equation (1) must be repeated many times, say, at varying values of some parameterλ in the
interactionV (x) = V (λ,x). In this situation, quick calculations are not always feasible:
the most efficient perturbative approaches necessitate the exact solvability of equation (1)
at some optimal reference value ofλ = λ[0] [2].

Whenever all the eligible reference potentials happen to lie ‘too far’ [3] from the relevant
(say, phenomenological) domain of parametersλ, the convergence of the perturbation series
becomes prohibitively slow. At the same time, virtually all the available perturbative
recipes which could eventually use an improved, unsolvable referenceV (λ[0],x) either seem
prohibitively complicated [4] or employ numerical integration and take equation (1) in one
dimension only [5]. In practice, as a consequence, people patiently repeat an uninspired
numerical solution of the partial differential Schrödinger equation (1) as many times as
required.

In the present paper, we shall circumvent the latter difficulty. Our new approach
will be based on a significant improvement of thenumerical constructions at an arbitrary
dimension and initialλ = λ[0] (cf sections 2 and 3). In section 4 this zero-order step will
be complemented by a new higher-order recipe of theperturbativeRayleigh–Schr̈odinger
type for all the neighbouringλ ≈ λ[0] .

0305-4470/97/248771+13$19.50c© 1997 IOP Publishing Ltd 8771
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2. Standard methods forλ = λ[0]

2.1. One spacial dimension

Let us start our analysis from the simplest one-dimensional version

− d2

dx2
ψ(x)+ V (x)ψ(x) = Eψ(x) (2)

of Schr̈odinger equation (1) with a symmetric potentialV (x) ≡ V (−x). It is an ordinary
differential equation. At any ‘trial’ (i.e. not necessarily physical) energy parameterE = ET,
it possesses a pair of independent solutionsψ(x) = ψ(E, x) with even and odd parity. In
the origin, these solutions may be normalized by the respective formulae

ψ(E, 0) = 1
∂

∂x
ψ(E, 0) = 0 parity= even (3)

and

ψ(E, 0) = 0
∂

∂x
ψ(E, 0) = 1 parity= odd. (4)

Their interpretation depends on their asymptotic behaviour. In scattering, they have to
be matched to an outgoing wave at a suitable phase shift [6]. The complex energy of
resonances may also be determined [7]. In the related literature the importance of a
maximal computational efficiency of this matching has been emphasized many times. One
may mention an unusually large number of not too dissimilar methods which compete for
physicists’ attention and preference [8]. In [9] the use of a thorough Padé extrapolation
indicates that the careful matching is a decisive factor in an overall success of calculations.

Here, we shall only restrict ourselves to bound-state systems. The asymptotics of their
wavefunctions (of both parities) remain trivial,

ψ(E,R) = 0 R � 1. (5)

Numerically, their correct (real and discrete) energiesE = E(physical) may be computed
as the roots of transcendental equation (5) in the limitR → ∞ [10]. The use of
commercial software (e.g., MAPLE [11]) makes the practical evaluation of energies
extremely comfortable.

2.2. Runge–Kutta recurrences

A recurrent code of the Runge–Kutta type may solve equation (2) at any trial energyET.
With initial conditions (3) or (4), the resulting tentative wavefunctionψ(ET, x) must pass
the physical boundary-condition test (5). Otherwise, we have to search for an alternative
energy candidateE′T. An iterative determination of the correctE(physical) may then be based
on its interval-halving localization.

Let us note that our assumption of symmetry of the potential eliminates, in effect, one
of the two physical asymptotic conditionsψ(E,±R) = 0, R � 1. One may weaken
this assumption in several ways. First, a generalization of the technique to asymmetric
potentials in one dimension is immediate. For anyV (x) 6= V (−x) which is confining
(i.e. V (±∞) > E(physical)) we shift the origin,(−R,R) −→ (0, 2R), and employ the
initialization (4).

Second, the scope of our previous considerations may be extended to central potentials
V (x) ≡ V (x), x = |x| in any dimension. The related partial differential Schrödinger (1)
degenerates to a sequence of its ordinary partial wave projections [6]. All of them coincide
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with equation (2) with an effective potentialV eff(x) = `(`+1)x−2+V (x). The acceptable,
regular Runge–Kutta solutions may be normalized by the only slightly modified formula
(4),

ψ(E, x) = x`+1+ small corrections |x| � 1. (6)

One may directly return to one dimension via the choice of` = −1 (even parity) or̀ = 0
(odd parity). In three dimensions, integers` = 0, 1, . . . number the angular momenta. InK
dimensions, one has only to replace` by `+ (K−3)/2 [12]. At largex, all these solutions
share the same boundary condition (5).

A non-trivial pattern of generalization must be designed for more-dimensional forces
without a central (or other) symmetry. They may describe various important phenomena
(e.g., crystal surfaces in solid-state physics etc [13]). Unfortunately, even their simplest
two-dimensional example is already non-trivial.

2.3. Runge–Kutta recurrences in two spacial dimensions

For simplicity, we shall only consider the non-central Schrödinger equation

− ∂2

∂x2
ψ(x, y)− ∂2

∂y2
ψ(x, y)+ V (x, y)ψ(x, y) = Eψ(x, y) (7)

in its most elementary Runge–Kutta discretization which replaces the kinetic energy operator
−∂2

x − ∂2
y by the five-term difference approximation,

− ∂2

∂x2
ψ(x, y)− ∂2

∂y2
ψ(x, y) = T ψ(x, y)+O(h2) (8)

h2T ψ(x, y) = −ψ(x + h, y)− ψ(x − h, y)− ψ(x, y + h)− ψ(x, y − h)+ 4ψ(x, y).

The obligatory transitionh→ 0 to the exact limit will tacitly be shifted to the very end of
all our subsequent considerations.

The action of T is formally defined on an infinite rectangular lattice(xj , yk) =
(x0 + jh, y0 + kh). A finite range of indicesj = 0, 1, . . . , N and k = 0, 1, . . . ,M + 1
specifies a relevant compact sublattice. In all the confining cases the ‘edges’x0, y0,
x∞ = x0 + Nh and y∞ = y0 + (M + 1)h have to lie in the area where the potential
is already large. This leads to the natural boundary conditions

ψ(x0, yk) = ψ(xN, yk) = 0 k = 1, 2, . . . ,M

ψ(xj , y0) = ψ(xj , yM+1) = 0 j = 0, 1, . . . , N.
(9)

An iterative selection of the true physical solutions will again be based on a tentative, partial
violation of boundary conditions. In other words, we are going to treat our boundary-value
Schr̈odinger equation via its certain initial-value re-arrangement in an arbitrary number of
dimensions.

In contrast to the previous one-dimensional example, there exist many independent
solutions on our planar Runge–Kutta lattice at a given energyET. In an incomplete
parallel to our one-dimensional methodical guide, let us define thenth regular solution
ψ(xj , yk) = ψ(n,ET, xj , yk) by the most trivial initialization of the left-boundary type (4),

ψ(n,ET, x0, yk) = ψ(n,ET, x1, yk) = 0 k = 1, 2, . . . ,M, k 6= n
ψ(n,ET, x0, yn) = 0, ψ(n,ET, x1, yn) = 1 n = 1, 2, . . . ,M.

(10)

At any fixed grid sizeh� 1, our differential equation (7) becomes solvable via a separate
evaluation of each of theM independent regular solutionsψ(n,ET, xj , yk) in a way which
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is recurrent with respect to the indexj . The ‘physics’ represented by the full set of boundary
conditions (9) will emerge only after we insert a superposition

ψ(ET, xj , yk) =
M∑
n=1

cnψ(n,ET, xj , yk) (11)

in all boundary conditions (9) which remained unused during the Runge–Kutta recurrent
evaluations themselves. We get the constraint

M∑
n=1

cnψ(n,ET, xN, yk) = 0 k = 1, 2, . . . ,M. (12)

Let us now simplify the notation slightly, markingM by M matrices by ‘roofs’̂ and
abbreviating

ψ(n,ET, xj , yk) ≡ (9̂{j}T )k,n k, n = 1, 2, . . . ,M. (13)

This enables us to read equation (12) as a mere linear algebraic condition which has a
non-trivial solutionc if and only if itsM-dimensional determinant vanishes,

9̂
{N}
T c = 0 det9̂{N}T = 0. (14)

Our Schr̈odinger equation transformed in the bidirectional Runge–Kutta recurrences
[T + V (x, y)− ET]ψ(ET, x, y) = 0 may also be partitioned,

Ŵ {1} Î 0̂ . . .

Î Ŵ {2} Î 0̂ . . .

0̂ Î Ŵ {3} Î . . .

. . . . . . . . .



9̂
{1}
T

9̂
{2}
T

9̂
{3}
T

. . .

 =


0̂

0̂

0̂

. . .

 . (15)

The dynamical input information is compressed on the main diagonal,

(Ŵ {j})m,n =


−4− h2[V (xj , yn)− ET] |m− n| = 0

1 |m− n| = 1

0 |m− n| > 1.

(16)

The initialization (10) enables us to define the regular solution in closed form, as the
following determinant-like ordered products

9̂
{1}
T = Î

9̂
{2}
T = −Ŵ {1}

9̂
{3}
T = Ŵ {2}Ŵ {1} − Î

9̂
{4}
T = −Ŵ {3}Ŵ {2}Ŵ {1} + Ŵ {3} + Ŵ {1}
· · · .

(17)

Our ‘determinant of determinants’ in equation (14) degenerates back to the ordinary secular
determinant in one dimension [8].Vice versa, at M > 1, the matrix equation (15) never
terminates.
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3. Accelerated iterations atλ = λ[0]

If our guessET ‘misses’ the correct value of the energyE(physical) (and violates the physical
boundary condition (5)) the differential Schrödinger equation (1) may still possess the
unphysical regular solutionsψ(ET,x). The differenceE(physical) − ET may be treated as
a product of a new energy variableε(physical) with a ‘small’ (though not yet determined)
auxiliary quantityδ. This induces a natural change of variables

E = ET + δε ψ(E,x) = ψ(ET,x)+ δη(x) δ 6= 0 (18)

and transforms equation (1) into a strictly equivalent non-homogeneous equation

−4η(x)+ V (x)η(x) = (ET + δε)η(x)+ εψ(ET,x) (19)

with a small parameterδ.

3.1. Newton method in one dimension

In one dimension, at a fixed old guessET 6= E(physical) and at an arbitrary (i.e. physical as
well as unphysical) energy shiftδε our non-homogeneous Schrödinger equation (19) will
posses a non-trivial auxiliary solutionη(x) = η(ε, ET, x) even after its trivial (i.e. much
more comfortable) initialization

η(ε, E,0) = 0
∂

∂x
η(ε, E,0) = 0. (20)

After we subtract the dominant part (i.e. the original reference differential equation (2))
from our exact Schr̈odinger equation (19), we may omit the (single) second-order term and
get the approximative differential equation

− d2

dx2
ηT(x)+ V (x)ηT(x) = ETηT(x)+ εTψ(ET, x) (21)

for correctionsηT(x) = η(εT, ET, x)[1 + O(δ)]. We encounter an apparent paradox. The
latter equation has to define the new wavefunction but a variation of its argumentεT may
only change its norm. Indeed, it is easy to verify that

ηT(x) = εT
∂

∂ET
ψ(ET, x)+O(δ). (22)

The resolution of the ‘paradox’ may be mediated by our auxiliary factorδ. Its variability
enables us to choose a convenient norm (say,εT = 1), to solve the pair of the initial value
problems(2)+ (21) and to impose the asymptotical boundary condition upon the truncated
Taylor seriesψ(E, x) = ψ(ET, x) + δη(εT, ET, x) + O(δ2). Unexpectedly, within our
first-order precision, this fixes the unique physical value of our parameter,

δ = δT +O(δ2
T) δT = −ψ(ET, R)

ηT(R)
R � 1. (23)

The exact energy becomes approximated in an optimal manner as well, and an extremely
quick convergence ofET towards its exact numerical value is achieved at an arbitrary
potential,

ET → E′T → · · · → E(physical) E′T = ET + δTεT

ET − E(physical) = O(δ)⇒ E′T − E(physical) = O(δ2).
(24)

Let us pick up the popular anharmonic oscillator for illustration.
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3.2. Numerical test

In practical computations, the efficiency of iterations (24) will increase with the improvement
of the initial ET, due to the decrease of|δ|. A numerical verification of this expectation is
sampled here in table 1. Our selection of the examples

V[0](x) = v2x
2+ v4x

4 v4 > 0 (25)

was inspired by the recent numerical study by Drozdov [14]. He had chosen several sets
of couplingsvi in the quartic and double-well regime (i.e. with a strongly non-perturbative
interpretation). By the so-called Hill-determinant method he calculated the energies with
high precision. They proved useful here for comparisons (cf the last row in table 1).

Our present determination of energies uses the first derivatives (22) and is, therefore,
equivalent to the Newton algorithm. Numerically, our table illustrates nicely its quadratic
rate of convergence (24). After we start from a reasonably realistic guessET, our iterations
give an amazingly quickly convergent practical recipe. Our test indicates that a one-digit
initial precision ofET plus the four to six iterations already reach the ultimate limit of
precision given by the ten-digit computer arithmetics of our Runge–Kutta integration.

If needed, the higher-order corrections could be introduced in the same spirit. In
section 4, this will be done in full generality including also the possible changes of potentials.
At the present fixedλ = λ[0] , this would only be a straightforward exercise with limited
applicability. In a self-explanatory notation, one defines the second-order corrections by the
third differential equation

− d2

dx2
ηTT(x)+ V (x)ηTT(x) = ETηTT(x)+ εTηT(x)+ εTTψT(x) (26)

and by the explicit second-order recipe

E(physical) = ET + δTTεT + δ2
TTεTT +O(δ3

TT) (27)

with arbitrary normsεT andεTT and with the implicit definition

ψT(ET, R)+ δTTηT(εT, ET, R)+ δ2
TTηTT(εTT, εT, ET, R) = 0 (28)

of the second-order parameterδTT. In accord with our overall philosophy (as well as
preliminary numerical tests), the smaller roots of the latter algebraic equation have to be
preferred.

3.3. Newton method in more dimensions

Let us now recall equation (15), i.e. the two-dimensional partial differential Schrödinger
equation at an incorrect energyET and in the simplest Runge–Kutta approximation of
section 2. It generates the regular solutions (17) on the lattice where the sequence
xj , j = 1, 2, . . . ,M, means a single point in one spacial dimension and becomes a one-
dimensional set in two spacial dimensions (equally well, it may be generalized to be a two-
dimensional array in three spacial dimensions withM = M ′ × N ′ etc). Unfortunately, no
superposition (11) can be made compatible with boundary conditions sinceET 6= E(physical).

Changing variables (18) withψ(ET, xj , yk) = (9̂
{j}
T cT)k, we may only write down the

discretized Schr̈odinger equation (19),

[T + V (x, y)− ET]η(ε, ET, x, y) = εψ(ET, x, y)+ δεη(ε, ET, x, y) (29)

and omit the negligible corrections. Under the assumption

η(εT, ET, xj , yk) = ηT(xj , yk)[1+O(δ)] ηT(xj , yk) = 8̂{j}cT 8̂{1} = 0̂ (30)
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this leads to the replacement of our original Schrödinger equation by the coupled pair of
Runge–Kutta recurrences

(T + V − ET)9̂
{j}
T = 0̂ (T + V − ET)8̂

{j}
T = εT9̂

{j}
T j = 1, 2, . . . , N. (31)

Finally, after the same trivial choice of the normεT = 1 as above, the boundary conditions
acquire the linear homogeneous form

(9̂
{N}
T + δ8̂{N}T +O(δ2))cT = 0. (32)

Within the error boundsO(δ2
T) it defines the coefficientscT. The necessary condition (of

vanishing of thelinearized secular determinant) also gives the explicitδT. It depends on
M and generalizes the ratio (23) to more spacial dimensions.

4. Perturbation corrections nearλ[0]

4.1. Rayleigh–Schr¨odinger series

The methods of our preceding text provide a (numerical) knowledge of a bound-state
wavefunctionψ[0](x) and its energyE[0] at a fixed potentialV (λ[0],x) ≡ V[0](x). Now,
we intend to solve the whole set of Schrödinger equations (1) with potentials

V (λ,x) = V[0](x)+ (λ− λ[0])V[1](x)+ (λ− λ[0])
2V[2](x)+ · · · . (33)

For this purpose, we shall use the Rayleigh–Schrödinger perturbation ansatz

ψ(x) = ψ[0](x)+ (λ− λ[0])ψ[1](x)+ (λ− λ[0])
2ψ[2](x)+ · · · (34)

E = E[0] + (λ− λ[0])E[1] + (λ− λ[0])
2E[2] + · · · . (35)

In any number of dimensions this splits our differential Schrödinger equation (1) into its
λ→ λ[0] zero-order version

(H[0] − E[0])ψ[0](x) = 0 (36)

accompanied by the hierarchy of the (in more than one dimension, partial) differential
equations for corrections,

(H[0] − E[0])ψ[1](x) = −H[1]ψ[0](x)+ E[1]ψ[0](x)

(H[0] − E[0])ψ[2](x) = −H[2]ψ[0](x)− (H[1] − E[1])ψ[1](x)+ E[2]ψ[0](x) . . . .
(37)

In a compact notation, all these equations possess the same non-homogeneous form

(H[0] − E[0])ψ[k](x) = τ[k−1](x)+ E[k]ψ[0](x) (38)

with the obvious abbreviationτ[k−1](x) for ‘known’ terms. These equations should define
correctionsE[k] and ψ[k](x) in terms of their predecessors (we may easily infer that
τ[0](x) = H[1]ψ[0](x) etc).

4.2. The ansatz of Sk´ala andČı́žek

We may note a close practical complementarity of our ‘non-standard’ zero-order recipe of
section 3.1 with the recent developments of the Rayleigh–Schrödinger perturbation theory in
one spacial dimension as offered by Skála andČı́žek [5] and further developed in [15–18].
A common idea of all these prescriptions may be found in a combined use of Runge–Kutta
recurrences and boundary conditions. In particular, in [5, 15] the evaluation of the first- and
higher-order Rayleigh–Schrödinger corrections has implicitly been based on some known



A quick perturbative method for Schr¨odinger equations 8779

(typically, harmonic oscillator) zero-order input while the authors of [16, 18] have noted
that it is sufficient to evaluate this input by the standard numerical methods.

The most important theoretical step towards the feasibility of construction of
expansions (34) and (35) aroundarbitrary λ[0] has been made in [5] where the (a priori ,
arbitrary) dependence ofψ[k](x) on thevariable energyE[k] has been fixed as linear. After
a thorough further study of this conjecture [15] it became clear that the proper ansatz should
rather be two-parametrical,

ψ[k](x) = ϕ[k](x)+ E[k]χ[k](x)+ Fψ[0](x) (39)

keeping trace of the (obvious) renormalization ambiguity ofψ[k](x). The second variable
F = F[k](E[k]) may influence the Runge–Kutta recurrences and its role will be discussed
later; the variability ofE[k] in equation (39) gives

[T[0] + V[0](x)− E[0] ]ϕ[k](x) = τ[k−1](x) (40)

[T[0] + V[0](x)− E[0] ]χ(x) = ψ[0](x) (41)

i.e. in effect it splits equation (38) in two parts.

4.3. More than one dimension

The most important practical condition of applicability of the whole perturbative recipe in
one spacial dimension lies in a quick numerical solvability of the zero-order equation (36).
Hence the effort of the preceding two sections. Still, as we have already mentioned,
the importance of our accelerated evaluation ofE[0] further increases, significantly, after
a transition to the more spacial dimensions. Unfortunately, in this generalization, the
appropriate Rayleigh–Schrödinger formalism has not yet been published in any explicit
detail.

For completeness, we are going to fill this gap here. Our reason lies not only in an
enhancement of importance of our iterative method of section 3.3 (by showing a new and
broad area of its applicability in future computations) but also in an immanent challenging
mathematics. Indeed, in spite of an existing overall belief in a feasibility of calculations
with the ansatz (39) and equations (40) and (41) in more dimensions [17], only a few
incomplete studies are known to us which have paid attention to the related technicalities
[19].

Let us now return to two spacial dimensions. The partial differential equation (38) with
kernel

H[0] − E[0] ≡ − ∂2

∂x2
− ∂2

∂y2
+ V (λ[0], x, y)− E[0] (42)

is not invertible and a re-normalizationψ[k](x, y)+ constant× ψ[0](x, y) of its solutions
is permitted. In a way which extends the one-dimensional pseudo-inversion construction
[5, 16] we may discretize the two-dimensional equations (40) and (41), i.e. in the notation
of section 2.3 write

[T + V (λ[0], x, y)− E[0] ]ϕ[k](x, y) = τ[k−1](x, y) ϕ[k](xj , ym) = (Â{j}a)m (43)

[T + V (λ[0], x, y)− E[0] ]χ[k](x, y) = ψ[0](x, y) χ[k](xj , ym) = (B̂{j}b)m (44)

with some auxiliary (though not yet fully specified) analogueŝA{j} and B̂{j} of our above

Runge–Kutta regular solution matriceŝ9{j}T and8̂{j}T , respectively.
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4.4. The choice of normalization

Having dropped the leading-order subscripts [k] with k > 0 as redundant, we may start
from equation (40) and re-write it in a transparent and recurrent Runge–Kutta form

Î 0̂ . . . 0̂

Ŵ {2} Î 0̂ . . . 0̂

Î Ŵ {3} Î 0̂ . . .

0̂
. . .

. . .
. . . 0̂

0̂ . . . Î Ŵ {N−1} Î




Â{2}a
Â{3}a
Â{4}a
. . .

Â{N}a

 =


τ
{1}
[k−1] − Ŵ {1}Â{1}a
τ
{2}
[k−1] − Â{1}a
τ
{3}
[k−1]

. . .

τ
{N−1}
[k−1]

 . (45)

Now, the second parameterF enters the game—we shall employ its variability and postulate

M∑
m=1

am = 1 Â{1} = Î . (46)

This enables us to glue theM identical columnsτ {j}[k−1] into a matrixτ̂ {j} and to get rid of
vectorsa in equation (45) completely,

Î 0̂ . . . 0̂

Ŵ {2} Î 0̂ . . . 0̂

Î Ŵ {3} Î 0̂ . . . 0̂

0̂
. . .

. . .
. . . 0̂

0̂
. . . Î Ŵ {N−2} Î 0̂

0̂ . . . 0̂ Î Ŵ {N−1} Î





Â{2}
Â{3}
Â{4}
Â{5}
. . .

Â{N}


=



τ̂ {1} − Ŵ {1}
τ̂ {2} − Î
τ̂ {3}

τ̂ {4}
...

τ̂ {N−1}


. (47)

This is an equation which defines all the matriceŝA{j} step by step.
Mutatis mutandis, analogous manipulations have to be applied to equation (44) for

functions χ . In a way inspired by equation (30) we shall use the simplestB̂{1} = 0̂.
One of the first consequences is obtained when we contemplate the ansatz (39) atx = x1,
c = a+E[k]B̂{1}b+F(E[k])c[0] . No ambiguity is left—it defines the unique renormalization

F =
∑M

m=1(c[k])m − 1∑M
m=1(c[0])m

. (48)

4.5. Boundary conditions

The order independence ofχ[k](x, y) = χ[0](x, y) is accompanied by the degenerate form
of theM-dimensional matriceŝB{j} (composed of theM identical columnsB{j} due to the
trivial initialization B̂{1} = 0̂). As a consequence, we obtain the simpler, vectorial form of
the related Runge–Kutta recurrences which implicitly defineB̂{j},

Î 0̂ . . . 0̂

Ŵ {2} Î 0̂ . . . 0̂

Î Ŵ {3} Î 0̂ . . . 0̂

0̂
. . .

. . .
. . . 0̂

0̂
. . . Î Ŵ {N−2} Î 0̂

0̂ . . . 0̂ Î Ŵ {N−1} Î





B{2}

B{3}

B{4}
...

B{N−1}

B{N}


=



ψ
{1}
[0]

ψ
{2}
[0]

ψ
{3}
[0]

. . .

ψ
{N−2}
[0]

ψ
{N−1}
[0]


. (49)
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All these components ofχ result from the inversion of the same triangular matrix as
above. We could call the inverse of this matrix (shared by both equations) an unperturbed
propagator. After all, one could ‘glue’ equations (43) and (44) together and add the vector
B as an additional row to the matrix̂A itself.

In a way generalizing the one-dimensional constructions, the formula for energies will
follow from the asymptotic boundary condition applied to ourkth-order wavefunction. For
lattices withM > 1, the determination of the parameterE[k] becomes coupled to the
determination of theM superposition coefficientsam constrained by the (re)normalization
condition (46). In such an arrangement we get the asymptotics

Â{N}[k]a[k] +B{N}E[k] = 0 (50)

coupled to equation (46). This makes the final equation non-homogeneous,
A{N}11 A{N}12 . . . A{N}1M B{N}1

A{N}21 A{N}22 . . . A{N}2M B{N}2

. . .

A{N}M1 A{N}M2 . . . A{N}MM B{N}M

1 1 . . . 1 0





a1

a2

...

aM

E[k]

 =


0

0
...

0

1

 . (51)

By the routine matrix inversion, theseM + 1 linear equations define theM unknown
coefficients(a[k])j , j = 1, 2, . . . ,M and the energyE[k] . Up to the exceptional singular
cases (which are not excluded but may be regularized, for example, by a change of the grid
lengthh), this leads to the explicit form of energies (and, simultaneously, wavefunctions)
given by Cramer’s rule in each perturbation order.

5. Summary

We have described a new approach to the family of Schrödinger equations (1) at some
set of couplings (or other parameters)λ in the potential. We have assumed that all these
parametersλ lie in a small vicinity of some reference valueλ[0] which does notmake the
unperturbed potential solvable.

Our new proposal consists of two methodically entirely independent parts. The first
is purely numerical and is restricted to the single reference interaction only at an arbitrary
fixed λ[0] . In this zero-order context, the routine trial and error fit of the recurrent (here,
Runge–Kutta) solutions to physical asymptotics is recalled. In a search for eigenvalues
we recommend the Newton iterative approach. This is a drastic recipe which, in effect,
uses several recurrent Runge–Kutta constructions per single iteration. At such a cost we
eliminate any need for the universal accelerators of convergence [20].

Numerically, this was demonstrated in a test restricted, for simplicity, to one spacial
dimension. The expected quick (namely, quadratic) rate of convergence of iterations has
been verified on a few double wells. Its performance encouraged us to generalize our
bound-state implementation of Newton iterations to more dimensions.

The second part of our proposal is a new perturbative method. We shared its main
inspiration with the recent one-dimensional proposal by Fernández and Guardiola [18] (the
text of which had only become known to us after the submission but before revision of this
paper) relying upon the common recurrent spirit of both perturbation theory and numerical
(viz, Runge–Kutta) discretized constructions.
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In spite of an initial optimism [17], the original variable-energy idea (as applied in one
dimension by Sḱala andČı́žek [5]) did not suffice for an easy transition to more dimensions
[15]. Fortunately, by accepting the more general matrix-propagator point of view of [4, 19]
and by using, in effect, as many asM other auxiliary variables (withM →∞ in principle)
we were able to overcome the methodical barrier and to extend the Runge–Kutta perturbative
method to more than one dimension in a fairly universal manner.

The second, perturbative half of our text seems optimally tailored for correcting the
iterative zero-order numerical solutions of its first half. In the future, both these halves
might find a common area of applicability as a mixed, ‘numerically-perturbative’ method.
Due to their common recurrent background, a full power of their combination might emerge
in analyses of families of potentials with a variable couplingλ and in anabsence of
simplification of the Schr̈odinger equation(s) nearany particular valueλ[0] .
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[17] Skála L andČı́žek J 1996J. Phys. A: Math. Gen.29 6467
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